Back to search results

PhD Studentship: Extreme Learning to Handle 'Big Data'

Cranfield University

Qualification Type: PhD
Location: Cranfield
Funding for: UK Students, EU Students
Funding amount: £14,300 to £18,000 per annum
Hours: Full Time
Placed On: 10th April 2025
Expires: 10th July 2025
Reference: CRAN1148

Overview: A funded PhD studentship is available within the Autonomous and Cyber Physical Systems Centre at Cranfield University, Bedfordshire, UK.

As aerospace platforms go through their service life, gradual performance degradations and unwarranted system failures can occur. There is certain physical information known a priori in such aerospace platform operations. The main research hypothesis to be tested in this research is that it should be possible to significantly improve the performance of extreme learning and assure safe and reliable maintenance operation by integrating this prior knowledge into the learning mechanism.

The integrating should enable to guarantee certain properties of the learned functions, while keep leveraging the strength of the data-driven modelling. Most of, if not all, the traditional statistical methods are not suitable for big data due to their certain characteristics: heterogeneity, statistical biases, noise accumulations, spurious correlation, and incidental endogeneity. Therefore, big data demands new statistical thinking and methods. As data size increases, each feature and parameter also becomes highly correlated. Then, their relations get highly complicated too and hidden patterns of big data might not be possible to be captured by traditional modelling approaches.

This implies that mathematical modelling of such data is infeasible. The data-driven modelling approach could resolve this issue and we could use obtain data-driven models using machine learning algorithms such as artificial neural networks, reinforcement learning, and deep learning. A typical caveat of data-driven modelling using learning algorithms as Extreme Learning Machine (ELM) is that training data should cover the entire domain of process parameters to achieve accurate generalization of the trained model to new process configurations. In practice, this might not be possible, that is the sample data could cover only some space, not entire space, of process parameters. Integrating prior knowledge into the learning could enable accurate generalization of the data-driven model even when the space of system parameters is only sampled sparsely.

Consequently, it will improve the performance of the learning. Integration of the prior knowledge of the system into the learning procedure will be quite challenging since the key enabler of its very powers is the universal approximation capabilities. Sampled data are generally noisy, outliers occur, and there always exist a risk of overfitting corrupted data. Therefore, the learned function may violate a constraint that is present in the ideal function, from which the training data sampled. This PhD study will address this research challenge.

At a glance

  • Application deadline: Ongoing
  • Duration of award: 3 years
  • Eligibility: EU, UK
  • Reference number: CRAN1148

Supervisor

Prof Tsourdos and Dr Shin 

Entry requirements

Go to Cranfield webpage for more information.

Funding

The studentship is for three years and provides payment of tuition fees at the UK/EU rate (£9,000 per annum) plus a £14,300-£18,000 per annum contribution to living expenses.

We are looking for a UK national student (or a European resident in the UK for last three years) only. 

How to apply

To apply send a CV and a covering letter by email to: Dr Hyo-Sang Shin, h.shin@cranfield.ac.uk

For further information contact us today:
T: 44 (0)1234 758540
E: study@cranfield.ac.uk

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Ok Ok

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Manage your job alerts Manage your job alerts

Account Verification Missing

In order to create multiple job alerts, you must first verify your email address to complete your account creation

Request verification email Request verification email

jobs.ac.uk Account Required

In order to create multiple alerts, you must create a jobs.ac.uk jobseeker account

Create Account Create Account

Alert Creation Failed

Unfortunately, your account is currently blocked. Please login to unblock your account.

Email Address Blocked

We received a delivery failure message when attempting to send you an email and therefore your email address has been blocked. You will not receive job alerts until your email address is unblocked. To do so, please choose from one of the two options below.

Max Alerts Reached

A maximum of 5 Job Alerts can be created against your account. Please remove an existing alert in order to create this new Job Alert

Manage your job alerts Manage your job alerts

Creation Failed

Unfortunately, your alert was not created at this time. Please try again.

Ok Ok

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

 
 
 
More PhDs from Cranfield University

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge