Back to search results

PhD Studentship - Development of Advanced Porous Media Models for High-Temperature Gas-Cooled Reactors

The University of Manchester - Mechanical, Aerospace and Civil Engineering

Qualification Type: PhD
Location: Manchester
Funding for: UK Students, EU Students, International Students
Funding amount: £19,237
Hours: Full Time
Placed On: 10th March 2025
Closes: 1st July 2025

Research theme: Nuclear thermal-hydraulics

How to apply: uom.link/pgr-apply-2425

How many positions: 1

This 3.5 year PhD is fully funded, home students and students with settled status are eligible to apply. The successful candidate will receive a tax free stipend set at the UKRI rate (£19,237 for 2024/25) and tuition fees will be paid. We expect the stipend to increase each year.

High-Temperature Gas-Cooled Reactors (HTGRs) are one of the major Generation IV reactor designs, offering enhanced safety features, high thermal efficiency, and strong potential for industrial heat applications. The UK government’s Advanced Modular Reactor (AMR) programme has recently identified HTGRs as the preferred design for future advanced nuclear deployment in the UK, with an aim to deliver a demonstration reactor by the early 2030s.

One prominent HTGR configuration is the pebble-bed reactor, in which spherical fuel elements (pebbles) are densely packed within the core, creating a complex and heterogeneous thermal-fluid environment. Accurately predicting flow and heat transfer in these systems is critical for safety, performance, and design assessments, yet direct high-fidelity simulations, such as Large Eddy Simulation (LES) or Direct Numerical Simulation will remain computationally prohibitive for at least several decades. Instead, porous media approximations provide a practical alternative by treating the pebble bed as an effective continuum, replacing the explicit representation of individual pebbles with averaged flow properties that account for bulk flow resistance, heat transfer, and turbulence. While this significantly reduces computational cost and enables large-scale reactor simulations, current porous approaches, based on Reynolds-averaged Navier-Stokes models, rely on empirical correlations and assumptions that may not fully capture the high-temperature, complex thermal-fluid interactions within the pebble-bed.

This PhD project will focus on advancing porous media models for pebble-bed HTGRs by leveraging newly generated high-fidelity LES datasets. These datasets, produced under a parallel investigation, will provide detailed flow and temperature information for a geometry representative of a pebble-bed HTGR core. Building upon existing expertise in porous media modelling within the Thermo-Fluids Research Group (UoM), the project will analyse and volume-average these data to develop targeted refinements or propose alternative models where existing methods prove inadequate.

This project is suitable for Engineering or Physics graduates with a strong background in fluid mechanics and heat transfer, preferably with experience in computational modelling. It will involve the use of open-source computational fluid dynamics codes, with turbulence modelling and porous media approaches. It will also require the development of good programming skills (ideally C/C++ and Python/MATLAB or similar), good communication skills, the ability to work independent and engagement with industrial partners.

To apply please contact the main supervisor, Dr Dean Wilson - dean.wilson@manchester.ac.uk. Please include details of your current level of study, academic background and any relevant experience and include a paragraph about your motivation to study this PhD project.

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Ok Ok

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Manage your job alerts Manage your job alerts

Account Verification Missing

In order to create multiple job alerts, you must first verify your email address to complete your account creation

Request verification email Request verification email

jobs.ac.uk Account Required

In order to create multiple alerts, you must create a jobs.ac.uk jobseeker account

Create Account Create Account

Alert Creation Failed

Unfortunately, your account is currently blocked. Please login to unblock your account.

Email Address Blocked

We received a delivery failure message when attempting to send you an email and therefore your email address has been blocked. You will not receive job alerts until your email address is unblocked. To do so, please choose from one of the two options below.

Max Alerts Reached

A maximum of 5 Job Alerts can be created against your account. Please remove an existing alert in order to create this new Job Alert

Manage your job alerts Manage your job alerts

Creation Failed

Unfortunately, your alert was not created at this time. Please try again.

Ok Ok

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

 
 
 
More PhDs from The University of Manchester

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge