Back to search results

PhD Studentship: Adaptive Mesh Refinement for More Efficient Predictions of Wall Boiling Bubble Dynamics

University of Nottingham

Qualification Type: PhD
Location: Nottingham
Funding for: UK Students
Funding amount: Fully-funded PhD Studentship
Hours: Full Time
Placed On: 19th December 2024
Closes: 28th March 2025
Reference: ENG226

Adaptive Mesh Refinement for More Efficient Predictions of Wall Boiling Bubble Dynamics

Supervisor: Mirco Magnini

PhD Project Description

The aim of this PhD is to robustly validate and demonstrate the utility of an adaptive mesh refinement approach in interface resolving Computational Fluid Dynamics (CFD) simulations of flow boiling at conditions relevant to nuclear thermal hydraulics. Boiling is a technology central to both fusion and fission nuclear reactors, also including thermal management of several reactor components. The aim of these simulations is to generate data that can be leveraged to account for the detailed characteristics of a heat transfer surface on bubble dynamics during flow boiling, to provide an approach for generating more representative inputs for the wall boiling models used in component scale CFD assessments. In particular, this concerns quantifying the effects of the heat transfer surface’s detailed topography, porosity and wettability on near-wall bubble dynamics that govern flow boiling heat transfer and critical heat flux. The work ultimately contributes towards the development of improved methods for predicting critical heat flux in nuclear reactors, which can ultimately limit their justifiable performance, also advancing the design of both fusion and fission reactor components, and thereby contributing to increase their power density and decrease plant size.

The simulation approach will be applied to small sets of bubbles on representative patches of heat transfer surfaces. An adaptive mesh refinement approach will be used to enable the liquid-vapour interface of each bubble to be captured both accurately and computationally efficiently, by refining and coarsening the mesh each time step to reflect the prevailing flow field with minimal user effects. This approach will then be deployed to simulate the behaviour of bubbles over a range of flow conditions and heat transfer surfaces with different characteristics. This data set will finally be used to train surrogate models that can instantly predict quantities required by component scale CFD wall boiling models for different flow conditions and heat transfer surfaces. 

This is a fully-funded 3.5-years PhD studentship. The research will be conducted at the University of Nottingham within a wider research team comprising academics, post-graduate and post-doctoral researchers. The project will also involve close collaboration with Rolls-Royce and UKAEA as industrial partners. It is expected that the student will undertake a placement at Rolls-Royce during the project.

Candidate requirements: 

  • Due to funding restrictions, the position is only available for UK candidates
  • 1st or 2:1 academic qualification in Engineering or Physical Sciences or a related discipline, with expertise in fluid mechanics and heat transfer
  • Experience with OpenFOAM simulation software
  • Programming skills with software such as Matlab and/or Python

How to apply

Please send an email with subject “PhD studentship: Adaptive Mesh Refinement for More Efficient Predictions of Wall Boiling Bubble Dynamics” to Dr Mirco Magnini, mirco.magnini@nottingham.ac.uk, attaching a cover letter, CV and academic transcripts. Incomplete applications will not be considered. Suitable applicants will be interviewed, and if successful, invited to make a formal application. Please note only shortlisted candidates will be contacted and notified.

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Ok Ok

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Manage your job alerts Manage your job alerts

Account Verification Missing

In order to create multiple job alerts, you must first verify your email address to complete your account creation

Request verification email Request verification email

jobs.ac.uk Account Required

In order to create multiple alerts, you must create a jobs.ac.uk jobseeker account

Create Account Create Account

Alert Creation Failed

Unfortunately, your account is currently blocked. Please login to unblock your account.

Email Address Blocked

We received a delivery failure message when attempting to send you an email and therefore your email address has been blocked. You will not receive job alerts until your email address is unblocked. To do so, please choose from one of the two options below.

Max Alerts Reached

A maximum of 5 Job Alerts can be created against your account. Please remove an existing alert in order to create this new Job Alert

Manage your job alerts Manage your job alerts

Creation Failed

Unfortunately, your alert was not created at this time. Please try again.

Ok Ok

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

 
 
 
More PhDs from University of Nottingham

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge