Back to search results

PhD Studentship: Molecular basis for differential susceptibility to stress in freshwater invertebrates, BBSRC SWBio DTP PhD studentship 2025 Entry

University of Exeter - HLS

Qualification Type: PhD
Location: Devon, Exeter
Funding for: EU Students, International Students, Self-funded Students, UK Students
Funding amount: Up to £19,237 annual stipend
Hours: Full Time
Placed On: 20th November 2024
Closes: 11th December 2024
Reference: 5380

About:

The BBSRC-funded SWBio DTP involves a partnership of world-renown universities, research institutes and industry, based mainly across the South West and Wales.

This partnership has established international, national and regional scientific networks, and widely recognised research excellence and facilities.

We aim to provide you with outstanding interdisciplinary bioscience research training, underpinned by transformative technologies.

Project Description

Living organisms are continuously exposed to environmental stressors that affect their health, survival and ability to reproduce. In some highly stressful environments however, such as heavily polluted ecosystems that would be expected to cause high mortality rates, populations are thriving. This phenomenon has been attributed for the most part to genetic adaptation, but in many cases the extend of genetic adaptation observed is insufficient to explain the level of stressor resistance seen. Epigenetic changes contributing to phenotypic plasticity and microbiome-extension of host adaptive phenotypic plasticity are two likely important, and interacting, contributing mechanisms, but remain poorly characterised. Addressing this knowledge gap will provide novel and fascinating insight into how organisms interact with their environment in order to overcome adverse conditions and result in important knowledge to understand the consequences of exposure to stressors in natural and anthropogenic environments. The applications of this knowledge are vast and range from improvement of the resilience and welfare of farmed animals, contributing to food security, to a better management of the sustainability of wild populations and preserving biodiversity.

This project will address the following questions: How do organisms cope with stressors in their environment? What are the molecular mechanisms employed to allow survival under stressful conditions? What are the temporal dynamics and broader consequences of the alterations seen?

The student will test the hypothesis that epigenetic variation and microbiome plasticity, in addition to genetic adaptation, contribute to stressor tolerance.

The student will use Daphnia pulex, a keystone small crustacean species in freshwaters, as a model system. We have already identified a number of natural Daphnia populations with extensive metal tolerance, which is partly heritable in clean conditions and partly due to plasticity. Metals are particularly interesting because they constitute one of the most common contaminants in freshwater systems while many metals are also essential elements within the body, and therefore they will be used as an exemplar stressor in this project. The student will be able to utilise this unique biological resource to investigate how their genome, epigenome and microbiome quantitatively account for metal tolerance and whether tolerance to a specific metal is developed at the expense of loss of fitness (growth; reproduction; survival; resistance to other stressors).

The student will receive extensive training in state of the art techniques including, in vivo experimental techniques, genome, epigenome and microbiome sequencing and advanced bioinformatics analysis.

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Ok Ok

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Manage your job alerts Manage your job alerts

Account Verification Missing

In order to create multiple job alerts, you must first verify your email address to complete your account creation

Request verification email Request verification email

jobs.ac.uk Account Required

In order to create multiple alerts, you must create a jobs.ac.uk jobseeker account

Create Account Create Account

Alert Creation Failed

Unfortunately, your account is currently blocked. Please login to unblock your account.

Email Address Blocked

We received a delivery failure message when attempting to send you an email and therefore your email address has been blocked. You will not receive job alerts until your email address is unblocked. To do so, please choose from one of the two options below.

Max Alerts Reached

A maximum of 5 Job Alerts can be created against your account. Please remove an existing alert in order to create this new Job Alert

Manage your job alerts Manage your job alerts

Creation Failed

Unfortunately, your alert was not created at this time. Please try again.

Ok Ok

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

 
 
 
More PhDs from University of Exeter

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge