Back to search results

PhD Studentship: Incorporating Machine Learning Methods and Post-processing to Produce Optimal Weather Forecasts - NERC GW4+ DTP PhD Studentship for September 2025 Entry Ref 5407

University of Exeter - ESE

Qualification Type: PhD
Location: Exeter
Funding for: UK Students, EU Students
Funding amount: Up to £19,237
Hours: Full Time
Placed On: 21st November 2024
Closes: 13th January 2025
Reference: 5407

About the Partnership

This project is one of a number that are in competition for funding from the NERC Great Western Four+ Doctoral Training Partnership (GW4+ DTP).  The GW4+ DTP consists of the Great Western Four alliance of the University of Bath, University of Bristol, Cardiff University and the University of Exeter plus five Research Organisation partners: British Antarctic Survey, British Geological Survey, Centre for Ecology and Hydrology,  the Natural History Museum and Plymouth Marine Laboratory. The partnership aims to provide a broad training in earth and environmental sciences, designed to train tomorrow’s leaders in earth and environmental science. For further details about the programme please see nercgw4plus.ac.uk.

Project details

For information relating to the research project please contact the lead Supervisor via f.kwasniok@exeter.ac.uk

Project Aims and Methods

Weather forecasts are usually generated by ensembles of numerical weather prediction models, each with different initial conditions to quantify the uncertainty present in atmospheric phenomena. While nowadays errors are small in large-scale synoptic variables such as geopotential height, there are still significant biases and errors in dispersion in smaller-scale local weather elements, thus necessitating the application of statistical post-processing techniques to alleviate these issues and produce accurate and well-calibrated probabilistic forecasts.

This project will develop and explore novel statistical and machine learning approaches for turning raw ensembles into probabilistic forecasts. The main interest will be on non-Gaussian variables such as precipitation, wind speed and wind gusts. Relationships between large-scale weather regimes and local scale forecast errors may be investigated and harnessed for forecast improvement. Emphasis will be on multivariate methods which consider and preserve cross-site, cross-temporal and cross-variable correlations. The project may also look at the efficient blending of forecasts from different sources and in particular combinations of physics-based models and machine learning models. General forecast performance will be assessed with a particular focus on high-impact extreme events. 
This studentship will include the opportunity of a work placement for the student at the Met Office as CASE partner. 

 Project partners

The Met Office will contribute through (i) Providing co-supervision by the Met Office supervisor Dr Gavin Evans for the duration of the project. (ii) Providing the opportunity for the student to spend time physically located at the Met Office (at least three months) during their PhD including gaining an insight into the day-to-day concerns of the post-processing teams at the Met Office. (iii) The work undertaken by the student will also have the potential to influence the operational post-processing of weather forecasts at the Met Office. 

 Training

The DTP offers funding to undertake specialist training relating to the student’s specialist area of research.

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Ok Ok

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Manage your job alerts Manage your job alerts

Account Verification Missing

In order to create multiple job alerts, you must first verify your email address to complete your account creation

Request verification email Request verification email

jobs.ac.uk Account Required

In order to create multiple alerts, you must create a jobs.ac.uk jobseeker account

Create Account Create Account

Alert Creation Failed

Unfortunately, your account is currently blocked. Please login to unblock your account.

Email Address Blocked

We received a delivery failure message when attempting to send you an email and therefore your email address has been blocked. You will not receive job alerts until your email address is unblocked. To do so, please choose from one of the two options below.

Max Alerts Reached

A maximum of 5 Job Alerts can be created against your account. Please remove an existing alert in order to create this new Job Alert

Manage your job alerts Manage your job alerts

Creation Failed

Unfortunately, your alert was not created at this time. Please try again.

Ok Ok

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

 
 
 
More PhDs from University of Exeter

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge