Back to search results

PhD Studentship: Unlocking the molecular mechanisms governing stem cell dormancy. BBSRC SWBio DTP PhD studentship 2025 Entry

University of Exeter - HLS

Qualification Type: PhD
Location: Exeter
Funding for: EU Students, International Students, Self-funded Students, UK Students
Funding amount: Up to £19,237
Hours: Full Time
Placed On: 20th November 2024
Closes: 11th December 2024
Reference: 5345

About:

The BBSRC-funded SWBio DTP involves a partnership of world-renown universities, research institutes and industry, based mainly across the South West and Wales.

This partnership has established international, national and regional scientific networks, and widely recognised research excellence and facilities.

We aim to provide you with outstanding interdisciplinary bioscience research training, underpinned by transformative technologies.

Project Description

Cells in many organisms can enter a deep sleep mode called dormancy. This crucial biological process enables cells to endure harsh conditions by reducing their metabolism to a minimum, and conserving energy during periods of nutrient scarcity or environmental stress. In eukaryotes, dormancy is crucial to developmental stages, e.g. in plant seeds, fungal spores, and mammalian egg cells, and is a typical feature of stem cells. Dormancy is also a key factor in cancer because it enables some cancerous cells to persist during chemotherapy and cause disease relapse years later.

One of the most energy-demanding processes is protein biosynthesis, costing actively metabolising cells up to 40% of their chemical energy currency ATP. Upon transitioning into dormancy, cells reduce this energy cost as much as possible, by shifting their protein production factories, the ribosomes, into a “hibernation” mode. However, some ribosomes must remain active to produce essential proteins to keep the dormant cells alive. Despite the importance of ribosome hibernation for dormancy across the tree of life, its molecular mechanisms are poorly understood. 

In this interdisciplinary PhD project, you will investigate the mechanism of ribosome hibernation in dormant embryonic mouse stem cells from the cellular to the molecular level. By combining cutting-edge RNA-sequencing, proteomics and confocal microscopy, you will quantify the reduction of ribosome activity in dormant cells, where in those cells residual ribosome activity is maintained, and which essential proteins are still produced. By state-of-the-art cryo-electron tomography, you will solve the structure of the hibernating ribosomes in dormant cells, determine the factors that keep them switched off, and visualise the conformational changes that occur when the ribosomes transition into hibernation. Using modern genetic modification techniques (CRISPR), you will then overexpress or knock out the hibernation factors identified and examine how this affects the cells' ability to become dormant.

This project is the ideal opportunity to work in a truly interdisciplinary, diverse, and inclusive research team. You will work at the interface of three diverse research groups (Daum, Smith, and Verkade) housed at two top UK Universities (Exeter and Bristol) and collaborate with experts across fields, blending biology, imaging, structural biology, and bioinformatics to decipher living systems. You will acquire expertise in cutting-edge research techniques, which will place you at the forefront of research into life’s most fundamental processes. Your work will significantly impact our understanding of stem cell dormancy, and embryo development, and potentially inspire new cancer treatments.

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Ok Ok

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Manage your job alerts Manage your job alerts

Account Verification Missing

In order to create multiple job alerts, you must first verify your email address to complete your account creation

Request verification email Request verification email

jobs.ac.uk Account Required

In order to create multiple alerts, you must create a jobs.ac.uk jobseeker account

Create Account Create Account

Alert Creation Failed

Unfortunately, your account is currently blocked. Please login to unblock your account.

Email Address Blocked

We received a delivery failure message when attempting to send you an email and therefore your email address has been blocked. You will not receive job alerts until your email address is unblocked. To do so, please choose from one of the two options below.

Max Alerts Reached

A maximum of 5 Job Alerts can be created against your account. Please remove an existing alert in order to create this new Job Alert

Manage your job alerts Manage your job alerts

Creation Failed

Unfortunately, your alert was not created at this time. Please try again.

Ok Ok

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

 
 
 
More PhDs from University of Exeter

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge